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Abstract—

Fiber optic communication systems are the
mostwidelyusedforms of telecommunication
systems owing to their high speed and long-
distance communication. However, failures,
degradation of optical fiber, and defective
components impact their reliability. This
paper proposes a predictive-maintenance
framework based on supervised machine-
learning algorithms that predicts failures in
fiber-based ISP networks. Decision Tree,
Random Forest and XGBoost algorithms are
implemented on Optical Line Terminal

I. Introduction

Fiber-optic networks underpin the global
information economy, enabling
unprecedented  bandwidth and  speed.
Internet Service Providers (ISPs) rely on
these networks for broadband delivery to
enterprises and households. In spite of good
performance, fibers can suffer from
attenuation, cuts, defective splicing, and
environmental factors. Reactive
maintenance and time-based maintenance
response lead to long service outages and
high repair costs.

Predictive maintenance can also be
improved by predicting an equipment failure
before its actual breakpoint, using telemetry
optical power, signal-to-noise ratio (SNR),
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(OLT) and Optical Network Terminal (ONT)
telemetry data and the ability to predict
failures is evaluated. The implemented
framework improves network availability,
mean-time-to-repair, and service outage.
Random Forest achieved the most accurate
results. As a result, this framework endorses
the benefits of wusing ML for ISP
maintenance in a real-world scenario.

Keywords— Fiber Optics, Predictive
Maintenance, Machine Learning, ISP
Networks, Random Forest, Fault Predictio

error rates and machine-learning (ML) of
equipment temperature algorithms can learn
patterns that precede faults. This work
proposes a data-driven system integrating
Decision Tree, Random Forest, and
XGBoost models for fiber-network fault
prediction.

II. Related Work

Jun et al. [1] applied Decision Tree
classifiers to GPON networks and achieved
87 % accuracy in detecting anomalies Ojo
and Hassan [2] extended this for Nigerian
metro fiber by predicting the faults caused
by vandalism or flooding using RF with 85
% prediction accuracy, whereas Zhang et al.
[3] built CNN-based models for predicting
the BER trend. Li and Nejabati [4] proposed
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network self-healing using SDN and
reinforcement learning and Brown and Park
[5] integrated ML predictions into FTTH
maintenance platforms, achieving a 40%
MTTR reduction.

Existing systems, however, demand heavy
computation or proprietary APIs. Many lack
interpretability or large labeled datasets.
This study develops a lightweight,
interpretable, and deployable solution suited
to resource-constrained ISPs.

II1. Methodology

A. Data Collection

Telemetry data were obtained from ISP
monitoring tools such as Huawei U2000.
Parameters included optical power (dBm),
SNR, BER, temperature, voltage, and error
count. Data were labeled Normal (0) or
Fault (1).

B. Preprocessing

Missing values were imputed by mean;
outliers removed via z-score; and features
normalized with Min-Max scaling.
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C. Feature Engineering

Derived quantities like Power-Loss Margin
and Signal Stability Index were computed.
Principal Component Analysis (PCA)
reduced dimensionality.

D. Model Development

Three supervised models were developed:
Decision Tree, Random Forest, and
XGBoost.

y=f0ZE, w0

where (x) are input features, (®) model
weights, and (¢ ) learning functions.

E. Evaluation Metrics

TP + TN
Accuracy =
TP + TN + FP + FN
Precision = TP
TP + FP
Recall =

TP + FN
Precision. Recall

F1= 2’Precision + Recall
Dataset split = 80 % training / 20 % testing;

10-fold cross-validation ensured robustness.

F. Workflow
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[Fig. 1 — ML-Based Predictive Maintenance Workflow for ISP Networks]
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IV. Results and Discussion
A. Model Performance
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|M0del HAccuracy HPrecision HRecall HFI-Score ‘
IDecision Tree 0.87 0.84 .83 ]0.83 |
[Random Forest  [0.92 10.90 lo.o1  Jo.91 |
IXGBoost 10.90 |0.88 10.89 0.8 |
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[Fig. 2 — Model Performance Comparison Chart]

B. Confusion Matrices
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[Fig. 3 — Confusion Matrix (Decision Tree)]
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[Fig. 4 — Confusion Matrix (Random Forest)]
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[Fig. 5 — Confusion Matrix (XGBoost)]
C. ROC and Precision-Recall Curves
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[Fig. 6 — ROC Curves for All Models]
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[Fig. 7 — Precision-Recall Curves for All Models]
D.Feature Importance
|Feature ||Descripti0n ||Imp0rtance |
|Optical Power Level (dBm) ||Signal strength at receiver ||0.31 |
|Bit Error Rate (BER) ||Transmissi0n error rate ||0.25 |
|Signal-t0-Noise Ratio ||Signal VS noise power ||0.19 |
|Temperature ||Device/environment temp ||0.13 |
|V01tage Fluctuation ||Supply voltage variance ||0.07 |
|Err0r Count ||T0tal error events ||0.05 |
Caption: Table 1. Feature importance References

ranking (Random Forest).

V. Conclusion

This paper demonstrated that machine
learning can predict fiber-network faults
effectively. Random Forest achieved 92 %
accuracy, confirming that data-driven
maintenance can significantly reduce
downtime and optimize ISP resources.
Future work will explore reinforcement-
learning integration for adaptive, real-time
maintenance scheduling.
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