Enhancing Whale Optimization Algorithm with Pso: A Hybrid Benchmark Study

Soniya Wagh; Shital Bhairam Sandhya Dahak; Neeraj Kumar Jha Department of MCA G H Raisoni College of Engineering and Management, India

Abstract

Whale Optimization Algorithm (WOA) is known for its exploration ability while Particle Swarm Optimization (PSO) is known for its exploitation ability. Hybridizing them helps to improve convergence speed and solution accuracy. This paper presents a hybrid WOA-PSO algorithm which is evaluated on twentythree benchmark functions and compared its performance with the original WOA and is able to show better results. Hybrid WOA-PSO algorithm giving better optimal than solutions the original one. Experimental results between WOA and PSO enhances balance between exploration and exploitation.

Keywords:

Optimization, Hybridization, algorithm, benchmark, WOA

1. Introduction

Optimization Algorithm plays a major role in solving real word problems, where finding the best possible solution efficiently. Many practical applications such as machine learning, industrial automation, logistics, engineering design, and resource allocation, require robust optimization techniques to achieve better performance and efficiency. Among the widely used metaheuristic algorithm, The Whale Optimization Algorithm (WOA) it commonly known for its powerful exploration ability, it allows to find the vast solution space effectively. instead, the Particle Swarm Optimization (PSO) algorithm excellent in exploration, allowing it to clarify solution to achieve faster convergence [5].

To take the advantages of both techniques, this paper offers a hybrid WOA-PSO algorithm, which aims to improve the combination of speed and solution accuracy. The performance of hybrid algorithm is improved by using twentythree benchmark functions compared to original WOA. The Experimental Result demonstrate that the hybrid approach achieves the better optimal solution [7]. By merging the global search capability of WOA with the local refinement power of PSO, the hybrid WOA-PSO algorithm offers a more effective optimization technique. This study provides valuable insight it how hybridization can improve the metaheuristic algorithms, making them more suitable for solving real world optimization problems [6].

2. Literature Review

Optimization Algorithms are classified categories: Nature-based, into four Swarm-based, Physics-based, and Humanbased. Nature-based algorithm is an optimization technique inspired by natural phenomena, such as evolution, natural selection, or biological processes. Naturebased algorithms, like Genetic Algorithm (GA). Swarm-based algorithm is an optimization technique that simulates the collective behaviour and social interaction of swarms or groups of agents. Physicsbased algorithm is an optimization technique that models physical processes

and natural laws to find optimal solutions. Physics-based methods, such as Simulated Annealing (SA), use physical processes like energy minimization. Human-based algorithm is an optimization technique inspired by human behaviour, culture, or social dynamics. Human-based algorithms, like Cultural Algorithm (CA), replicate social and cultural interactions [3].

Category	Algorithms	Description
Physics-based	Sine Cosine	Inspired by
	Algorithm,	physical
	Equilibrium	phenomena such as
	Optimizer,	gravitational
	Gravitational	forces, equilibrium
	Search	states, and
	Algorithm	sinusoidal motion.
Swarm- based	Particle	Based on the
	Swarm	collective behavior
	Optimization,	of biological
	Ant Colony	groups like birds,
	Optimization,	ants and
	Slime Mould	grasshoppers.
	Algorithm	
Evolution-	Genetic	Mimics the
based	Algorithm,	principles of
	Differential	natural selection
	Evolution,	and evolution.
	Backtracking	
	Search	
	Algorithm	
Human	1brain Storm	Inspired by human
Behaviour-	Optimization,	learning, teaching,
based	Battle Royale	brainstorming, and
	Optimization	strategic
	Algorithm,	behaviours.
	Social	
	Engineering	
	Learning	
	Optimization	

Table 1: Classification of MetaheuristicAlgorithm

Sr. No.	Name of Algorithm	Name of Author
1.	Particle Swarm Optimization	James Kennedy and Russell Eberhart (1995)
2.	An idea Based on Honey Bee Swarm for Numerical Optimization	Dervis Karaboga (2005)
3.	A New Metaheuristic Bat- Inspired Algorithm	Xin-She Yang (2010)
4.	Cuckoo Search via Levy Flights	Xin-She Yang and Suash Deb (2009)
5.	Grey Wolf Optimizer	Seyedali Mirjalili et. al. (2014)
6.	Elephant Herding Optimization	Liang Wang et. al. (2015)

Table 2: Metaheuristic Algorithms

1. FLOW CHART

2. Mathematical Equations

Functions	Dimensions	Range	Imin
$F_1(S) = \sum_{m=1}^{z} S_m^z$	(10,30,50,100)) [-100 , 10	0] 0
$F_2(S) = \sum_{m=1}^{z} S_m + \prod_{m=1}^{z} S_m $	(10,30,50,100) [-10 ,10]	0
$F_{3}(S) = \sum_{m=1}^{2} (\sum_{n=1}^{m} S_{n})^{2}$	(10,30,50,100) [-100,10	0] 0
$F_4(S) = max_m\{ S_m , 1 \le m \le z\}$	(10,30,50,100) [-100,10	0] 0
$\begin{split} F_{12}(S) &= \frac{\pi}{a} \left\{ 10 \sin(\pi \tau_1) + \sum_{m=1}^{x-1} (\tau_m - 1)^2 \right[1 + \\ 10 \sin^2(\pi \tau_{m+1}) \right] + (\tau_x - 1)^2 \right\} + \sum_{m=1}^{x} u(S_m, 10, 100, 4) \\ \tau_m &= 1 + \frac{S_m + 1}{4} \\ u(S_m, b, x, i) &= \begin{cases} x(S_m - b)^i & S_m > b \\ 0 & -b < S_m < b \\ x(-S_m - b)^i & S_m < -b \end{cases} \end{split}$	(10,30,50,100)	[-50,50]	0
$\begin{split} F_{12}(S) &= 0.1 \{ sin^2 (3\pi S_m) + \sum_{m=1}^{z} (S_m - 1)^5 [1 + sin^2 (3\pi S_m + 1)] + (x_z - 1)^2 [1 + sin^2 2\pi S_z]] \end{split}$	(10,30,50,100)	[-50,50]	0

$F_{5}(S) = \sum_{m=1}^{n-1} [100(S_{m+1} - S_{m}^{2})^{2} + (S_{m} - 1)^{2}]$	(10,30,50,100)	[-38,38]	0
$F_6(S) = \sum_{m=1}^{z} ([S_m + 0.5])^2$	(10,30,50,100)	[-100 , 100]	0
$F_{7}(S) = \sum_{m=1}^{2} mS_{m}^{4} + random [0,1]$	(10,30,50,100)	[-1.28, 1.28]	0

International Journal of Modern Science and Research Technology ISSN NO-2584-2706

Functions	Dimension	Range	f.min
$F_{g}(S) = \sum_{m=1}^{s} - S_{m} sin(\sqrt{ S_{m} })$	(10,30,50,100)	[-500,500]	-418.98295
$F_9(S) = \sum_{m=1}^{s} [S_m^2 - 10\cos(2\pi S_m) + 10]$	(10,30,50,100)	[-5.12,5.12]	0
$\begin{split} F_{10}(S) &= -20 \exp\left(-0.2 \sqrt{\left(\frac{1}{\sigma} \sum_{m=1}^{\sigma} S_m^m\right)}\right) - \\ \exp\left(\frac{1}{\sigma} \sum_{m=1}^{\sigma} \cos(2\pi S_m) + 20 + d \end{split}$	(10,30,50,100)	[-32,32]	0
$F_{11}(S) = 1 + \sum_{m=1}^{z} \frac{s_m^2}{4000} - \prod_{m=1}^{z} \cos \frac{s_m}{\sqrt{m}}$	(10,30,50,100)	[-600, 600]	0

Functions	Dimensions	Range	f_{\min}	
$F_{14}(S) = [\frac{1}{500} + \sum_{n=1}^{2} 5 \frac{1}{n + \sum_{m=1}^{2} (m - b_{mn})^6}]^1$	2	[-65.536, 65.536]	1	
$F_{15}(S) = \sum_{m=1}^{11} [b_m - \frac{s_1(a_m^2 + a_m s_2)}{a_m^2 + a_m s_2 + s_4}]^2$	4	[-5, 5]	0.00030	
$F_{16}(S) = 4S_1^2 - 2.1S_1^4 + \frac{1}{3}S_1^6 + S_1S_2 - 4S_2^2 + 4S_2^4$	2	[-5, 5]	-1.0316	
$F_{17}(S) = (S_2 - \frac{5.1}{4\pi^2}S_1^2 + \frac{5}{\pi}S_1 - 6)^2 + 10(1-\frac{1}{8\pi})\cos S_1 + 10$	2	[-5, 5]	0.398	
$F_{in}(S) = \left[1 + (S_1 + S_2 + 1)^2 (19 - 14 S_1 + 3S^2 - 14 S_2 + 6S_1 S_2 + 3 S^2_2)\right] \times \left[30 + (2S_1 - 3S_1)^2 (18 - 32S_1 + 12 S^2 + 48S_1 - 36S_1 S_1 + 27 S^2_1)\right]$	2	[-2,2]	3	
$F_{19}(S) = -\sum_{m=1}^{4} d_m \exp\left(-\sum_{n=1}^{3} S_{mn}(S_m - q_{mn})^2\right)$	3	[1, 3]	-3.32	
$F_{20}(S) = -\sum_{m=1}^{4} d_m \exp\left(-\sum_{m=1}^{6} S_{mn}(S_m - q_{mn})^2\right)$	6	[0, 1]	-3.32	
$F_{21}(S) = -\sum_{i=1}^{3} [(S - b_m)(S - b_m)^T + d_m]^{2}$	4	[0,10]	-10.1532	1
$F_{22}(S) = -\sum_{m=1}^{7} [(S - b_m)(S - b_m)^{T} + d_m]^{T}$		4	[0, 10]	-10.4028
$F_{22}(S) = -\sum_{i=1}^{7} [(S - b_m)(S - b_m)^T + d_m]^{1/2}$		4	[0, 10]	-10.5363

Table 3: Benchmark Functions

Fig. 1: Search Space

3. Result and Discussion

From the below table this paper concludes that, hybrid WOA-PSO giving more relevant and small value as compared to original algorithm. Some values are remained unchanged and some are showing fluctuation in values. Results of hybrid WOA-PSO are impressive. Some function shows (F4, F6, F7, F12, etc) enhancement in values. For ex., function 1 reduced from 6.8019e-80 to 1.143e-78.

Function No.	Original Value	Hybrid Value
Function 1	6.8019e-80	1.143e-78
Function 2	6.6784e-55	2.8055e-53
Function 3	43708.8272	27734.5375
Function 4	4.0715	0.28816
Function 5	27.8255	27.7161
Function 6	0.13273	0.0973
Function 7	0.0032022	0.002682
Function 8	-11672.6931	-11405.443
Function 9	0	0
Function 10	3.9968e-15	3.9968e-15
Function 11	0	0
Function 12	0.011364	0.0057713
Function 13	0.5374	0.23443
Function 14	0.998	0.998
Function 15	0.00051	0.00033736
Function 16	-1.0316	-1.0316
Function 17	0.39789	0.39789
Function 18	3	3
Function 19	-3.8411	-3.7808
Function 20	-3.3122	-3.1869
Function 21	-10.1101	-10.0871
Function 22	-10.3895	-10.3755
Function 23	-2.8052	-1.6752

4. Conclusion

The proposed hybrid WOA-PSO algorithm combines the strengths of Whale and Optimization Particle Swarm Optimization, it leads to improve accuracy. Out of twenty-three benchmarks functions, the sixteen functions achieved better optimal values compared to the original one which demonstrating an improvement in WOA's performance.

5. Reference

[1] W. Y. Lin, "A novel 3D fruit fly optimization algorithm and its applications in economics," Neural Comput. Appl., 2016, doi: 10.1007/s00521-015-1942-8.

[2] Y. Cheng, S. Zhao, B. Cheng, S. Hou, Y. Shi, and J. Chen, "Modeling and optimization for collaborative business process towards IoT applications," Mob. Inf. Syst., 2018, doi: 10.1155/2018/9174568.

[3] X. Wang, T. M. Choi, H. Liu, and X. Yue, "A novel hybrid ant colony optimization algorithm for emergency transportation problems during postdisaster scenarios," IEEE Trans. Syst. Man, Cybern. Syst., 2018, doi: 10.1109/TSMC.2016.2606440.

[4] I. E. Grossmann, Global Optimization in Engineering Design (Nonconvex Optimization and Its Applications), vol. 9. 1996.

[5] R. V. Rao and G. G. Waghmare, "A new optimization algorithm for solving complex constrained design optimization problems," vol. 0273, no. April, 2016, doi: 10.1080/0305215X.2016.1164855.

[6] E.-S. M. El-Kenawy, M. M. Eid, M. Saber, and A. Ibrahim, "MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection," IEEE Access, 2020, doi: 10.1109/access.2020.3001151.

[7] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari, "An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling

problem," J. Intell. Manuf., 2018, doi: 10.1007/s10845-015-1039-3.

[8] Y. Li, J. Wang, D. Zhao, G. Li, and C. Chen, "A two-stage approach for combined heat and power economic emission dispatch: Combining multiobjective optimization with integrated decision making," Energy, 2018, doi: 10.1016/j.energy.2018.07.200.

[9] D. Yousri, T. S. Babu, and A. Fathy, "Recent methodology-based Harris hawks optimizer for designing load frequency control incorporated in multiinterconnected renewable energy plants," Sustain. Energy, Grids Networks, 2020, doi: 10.1016/j.segan.2020.100352.

[10] R. Al-Hajj and A. Assi, "Estimating solar irradiance using genetic programming technique and meteorological records," AIMS Energy, 2017, doi: 10.3934/energy.2017.5.798.

[11] R. Al-Hajj, A. Assi, and F. Batch, "An evolutionary computing approach for estimating global solar radiation," in 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, 2017. doi: 10.1109/ICRERA.2016.7884553.

R. A. Meyers, "Classical and [12] Nonclassical Optimization Methods Classical and Nonclassical Optimization Methods 1 Introduction 1 1.1 Local and Global Optimality 2 1.2 Problem Types 2 1.3 Example Problem: Fitting Laserinduced Fluorescence Spectra 3 1.4 Criteria for Optimization 4 1.5 Multicriteria Optimization 4." Encvcl. Anal. Chem., pp. 9678–9689. 2000, [Online]. Available: https://pdfs.semanticscholar.org/5c5c/908b b00a54439dcee50ec1ada6b735694a94.pdf N. Steffan and G. T. Heydt, [13] "Ouadratic programming and related techniques for the calculation of locational marginal prices in distribution systems," in 2012 North American Power Symposium (NAPS). 2012, 1-6.doi: pp. 10.1109/NAPS.2012.6336310.

[14] M. Mafarja et al., "Evolutionary Population Dynamics Grasshopper Optimization and approaches for feature selection problems," Knowledge-Based Syst., vol. 145, pp. 25-45, 2018, doi: 10.1016/j.knosys.2017.12.037.

[15] A. A. Heidari, R. Ali Abbaspour, and A. Rezaee Jordehi, "An efficient chaotic water cycle algorithm for optimization tasks," Neural Comput. Appl., vol. 28, no. 1, pp. 57–85, 2017, doi: 10.1007/s00521-015-203