
International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

557

A Study: Code Review in Software Development

using AI

Dhanashri Thakur; Gaurav Talse; Yogesh Sonvane

Dept. Master in Computer Application, GHRCEM, Nagpur, India

Abstract

A critical stage in software development,

code review guarantees the quality,

security, and maintainability of the code.

Traditional bottlenecks in the development

cycle and are laborious and prone to

human error. Code reviews are now more

accurate and efficient thanks to automated

solutions brought about by the

development of artificial intelligence (AI).

AI-powered tools evaluate source code,

identify defects, pinpoint security flaws,

and suggest fixes using Machine Learning

(ML) and Natural Language Processing

(NLP) techniques. This study investigates

the role of AI in automated code review

systems by examining several AI-driven

tools and frameworks utilized in

contemporary software development. We

assess the efficacy of deep learning-based

and conventional static analysis methods

in detecting anomalies in the code.

According to experimental findings, AI-

enhanced review systems outperform

traditional techniques in terms of accuracy,

efficiency, and fewer false positives. In

this paper author demonstrates how AI-

powered code review tools may improve

software quality and developer

productivity. Lastly, discussion of the

shortcomings of existing AI models and

propose ways to enhance automated code

review procedures in the future, such as

integrating AI with human-in-the-loop

techniques to create more effective

feedback systems.

Keywords

Automated Code Review, Artificial

Intelligence, Machine Learning, Natural

Language Processing, Software Quality,

Code Security, Deep Learning, Static

Analysis, Developer Productivity.

1. Introduction

Code review is a crucial component of the

programdevelopmentprocess as they identi

fy errors, security vulnerabilities, and

inconsistencies in the code ensuring

its reliability, accessibility.

and confidentiality. Code has historically

been assessed manually by software

developers and peers. Despite its

effectiveness, this approach

is often laborious, prone to mistakes,

and influenced by human behaviour. The

increasingly complex nature of computer

software can turn manual code audits into

obstacles in the design process, delaying

releases and increasing costs. With the

advent of automated solutions enabled by

artificial intelligence (AI), source

evaluation techniques are becoming

increasingly reliable and precise. Machine

learning (ML) and natural language

processing (NLP) methods can

be employed by AI systems to analyse

source code in real-time, detect faults, and

suggest enhancements. Software

Engineering (SE) is one of the numerous

processes where Artificial Intelligence

(AI) is increasingly being integrated. SE

has been a human activity for many years,

although many processes have been

mechanized. The adoption of AI into a

socio-technical procedure like SE, which

has historically relied on human

interaction, control, and decision-making,

could signal a paradigm shift in software

engineering [1]. Code review is a quality

assurance procedure that involves

developers reviewing each other's code

International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

558

modifications. It has several variations

depending on the business. Code review,

sometimes known as Modern Code

Review (MCR), began as formal code

inspections and has since developed into a

more relaxed procedure. MCR is

distinguished by its regularity, tool-based

nature, and informality. Knowledge

exchange, learning, flaw detection, and

code improvement are the process's

common advantages [2].

2. Background

For an extended period, automated code

auditing has been an essential element of

software development. Basic rule-based

advice was provided by early tools such as

SonarQube, Checkstyle, and Find Bugs,

which identified syntax errors, security

vulnerabilities, and technical infractions.

Although these tools depended on

established norms to enforce acceptable

practices, they frequently had significant

false positive rates and lacked contextual

comprehension of the code. As Artificial

Intelligence (AI) and Machine Learning

(ML) advanced, better automated code

review techniques appeared. DeepCode,

Codacy, and CodeScene are examples of

contemporary AI-driven applications that

use deep learning, large code datasets, and

Natural Language Processing (NLP) to

produce context-aware recommendations.

Unlike conventional static analysis tools,

AI-powered solutions are able to recognize

logical errors, examine source code

patterns, and suggest major enhancements

based on past learning.

2.1 Code Review

In the creation of software, code scrutiny

is an essential phase that ensures code

quality, safety, maintainability. It entails

carefully examining source code before

delivery to find mistakes, security holes,

and performance problems. The approach

includes human peer evaluations,

automatic reviews driven by AI, and static

analysis tools. While SonarQube and other

static analysis tools enforce preset criteria,

manual evaluations rely on developers’

knowledge. Machine learning and natural

language processing are used by AI-driven

systems, such as DeepCode and Amazon

CodeGuru, to lower false positives and

offer real-time feedback. Modern code

reviews combined with CI/CD workflows

allow for continuous quality assurance. A

thorough explanation of Google's well-

established, change-based, and tool-

assisted code review procedure can be

found here. At least one additional

developer must review any modification

made to the codebase. Tens of thousands

of developers participate in the review

process each day as both code authors and

reviewers, and tens of thousands of

modifications are made to the codebase

[3].

Fig1. AI-Powered Automated Code

Review Workflow

2.2 Presentation of Review Results

AICodeReview displays the review results

in an easy-to-use interface after the

analysis is finished, offering detailed

explanations and precise recommendations

for improving the code. To help

developers make well-informed changes,

these suggestions are produced using

industry standards, coding best practices,

and AI-driven insights. By analysing

syntax, logic, security flaws, and

performance problems, the system

provides project-specific, context-aware

recommendation. In contrast to

conventional static analysis tools that

depend on preset rules, AICodeReview

uses Natural Language Processing (NLP)

and machine learning to deliver intelligent,

International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

559

No Trust Low Trust

Moderate trust High Trust

10%

40% 15%

35%

adaptive feedback [5]. Each suggestion

includes a detailed reasoning process,

helping developers understand why a

change is needed and how it improves

code quality. This enhances developer

learning, trust, and efficiency in the review

process [6]. By integrating AI-driven

feedback within CI/CD pipelines and

IDEs, AICodeReview ensures real-time

code analysis, reduced manual effort, and

higher code reliability. This makes

software development more efficient,

scalable, and secure, reinforcing AI’s role

in modernizing automated code review.

2.3 Trust on AI

Widespread use of Artificial Intelligence

(AI) in vital fields including code review,

health care, banking, and robotics relies on

public trust in the innovation. To win over

consumers, AI models must be objective,

clear, and trustworthy. However,

confidence is affected by issues including

verdict reliability, bias in training data, and

explanations. Because trust in AI is

defined as the user's belief that "an agent

will help achieve an individual's goals in a

situation characterized by uncertainty and

vulnerability," it is particularly crucial

when users are involved in high-stakes

situations where errors could have serious

consequences.

Fig2. Developers Trust in AI-Powered

Code Review

In contrast to reliance or obedience, which

are often examined as behaviours,

confidence in AI is subjective and should

be viewed as an attitude, according to a

review paper [4]. Because of false

positives, generalization problems across

programming languages, and black-box

decision-making, developers may be

hesitant to depend on AI recommendations

in automated code review. AI models

should include human-AI cooperation,

Explainable AI (XAI), and adaptive

learning techniques to increase confidence.

Building trust also requires establishing

moral standards and guaranteeing

objective AI conduct.

2.4 Challenges in AI-Powered Code

Review

Although AI-powered code review

solutions improve automation, correctness,

and efficiency, a number of obstacles

prevent their widespread use. Reliability is

decreased by false positives and false

negatives since AI may miss real problems

or mistakenly flag correct code.

Developers are reluctant to accept AI

recommendations due to deep learning

models lack of explainability. When AI

models trained on one language have

trouble with another, generalization

problems occur. Aligning AI tools with

IDEs, CI/CD pipelines, and version control

systems presents integration issues. AI

models should allow multi-language

adaptation, integrate Explainable AI

(XAI), and facilitate human-AI

collaboration for improved decision-

making in order to address these problems.

By addressing these issues, AI-driven code

review will become more effective, secure,

and trustworthy [11,13].

2.4.1 Contextual Understanding and Best

Practices:

AI models often struggle to fully grasp

project-specific contexts, coding styles, or

domain-specific best practices. While they

can identify syntax errors and common

security flaws, they may not recognize

more nuanced design flaws,

maintainability issues, or architectural

inconsistencies.

International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

560

2.4.2 Security and Ethical Concerns:

AI-based code review tools may

inadvertently introduce security risks, such

as leaking sensitive code snippets when

processing code in cloud-based AI models.

Additionally, biased training data can lead

to AI models reinforcing existing coding

biases or incorrect recommendations.

2.4.3.Human-AICollaborationandTrust:

Developers may be reluctant to rely on AI-

generated code reviews, especially when

they contradict human intuition.

Encouraging human-AI collaboration,

where AI suggests improvements while

developers retain control over final

decisions, is critical for adoption.

3. Literature Survey

Automated code review has gained

significant attention in software

engineering, particularly with the

integration of Artificial Intelligence (AI).

This section reviews existing studies on

traditional code review methods, AI-driven

techniques, and their impact on software

quality. In software engineering,

generative AI has drawn a lot of interest,

especially for automated code generation,

refactoring, and debugging. Research has

indicated that AI-powered models that

have been trained on extensive code

Repositories are capable of correctly

anticipating such weaknesses and

recommending the best fixes.

Machine learning models increase

productivity by lessening the cognitive

strain on developers, according to research

in AI-assisted programming environments.

Deep learning algorithms and Natural

Language Processing (NLP) are used by

AI-powered code review tools to

comprehend programming structures and

identify trends that point to bad coding

practices. AI capabilities have also been

added to automated testing frameworks,

allowing for predicted failure analysis and

intelligent test case development.

Table 1
Traditional vs. AI-based Code Review

Feature

Traditional

Code

Review

AI-

Powered

Code

Review

Speed Slow Fast

Human
Effort

High Reduced

Error

Detection
Limited

Context-

aware and
automated

False
Positives

Moderate
Optimized
using ML

Adaptability
Hardcoded

rules

Self-

learning &
adaptive

Integration

with CI/CD

Manual and

separate
steps

Automated

& seamless

Deployment automation powered by AI

guarantees optimal resource allocation and

reduces human error in production

settings. Although these developments,

there are still issues with making sure AI-

generated suggestions adhere to industry

norms, security regulations, and best

practices. Careful thought must be given to

the ethical ramifications of AI-driven

software engineering decision-making,

especially with regard to bias,

explainability, and responsibility [7].

4. Approaches

The AI-powered code review system

follows a structured approach that

integrates machine learning, Natural

Language Processing (NLP), and static

code analysis to enhance software quality,

security, and maintainability. The approach

focuses on accurate code evaluation,

effective presentation of review results,

and building trust in AI-generated

recommendations.

4.1 Gathering and Preparing Data

We gathered an extensive set of open-

source software files from services such as

GitHub, GitLab, and Bitbucket for the

purpose of developing and evaluating the

AI model. To ensure diversity, the dataset

includes code from multiple programming

International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

561

languages, including Python, Java,
JavaScript, and C++ [9,10].

4.2 Model Training and Development

The AI-powered code review system is

trained using deep learning models,

specifically transformer-based

architectures like CodeBERT, to analyze

source code, detect issues, and provide

intelligent recommendations. The training

process involves data preprocessing,

supervised learning, transfer learning, and

reinforcement learning to ensure high

accuracy and adaptability across different

programming languages [8,11,14].

4.3 Metrics for Evaluation

We employed the following evaluation

measures to gauge the efficacy of the AI-

powered code review system.

Precision & Recall: Assesses how well

false positives and false negatives are

balanced.

4.4.IntegrationwithDevelopment

Workflow

The AI-powered code review system is

designed to seamlessly integrate into

modern software development workflows,

ensuringcontinuous feedback,automation,

and efficiency. By embedding AI into

CI/CD pipelines, IDEs, and version control

systems, developers receive real-time

insights on code quality, security

vulnerabilities, and best practices [9].

5. Methodology

The proposed AI-powered automated code

review system follows a structured

methodology comprising data collection,

preprocessing, model training, evaluation,

and integration with development

workflows. This section outlines the step-

by-step process used to build

and evaluate the system. In order to assess

the efficacy of generative AI in automated

code review, testing, and deployment, this

study takes a multifaceted approach.

Existing AI models are analysed

qualitatively, and their effects on software

quality are quantitatively evaluated. The

capabilities and limits of AI technologies

like DeepCode, OpenAI Codex, and AI-

powered static analysis frameworks are

investigated. Case studies of businesses

using AI-driven software engineering

techniques are used to gather empirical

data. Analysis is done on performance

parameters such deployment success rates,

code quality enhancements, and defect

detectionratesTogaugeefficiencyimprovem

ents and error reduction, a comparison

between workflows enhanced by AI and

conventional manual procedures is carried

out. The study also examines developer

viewpoints on AI adoption and evaluates

their level of confidence in

recommendations and proposals for AI-

generated code. Interviews and surveys

with cybersecurity specialists, DevOps

professionals, and software engineers shed

light on the practical applications of

generative AI in software development [7].

A number of performance indicators, such

as accuracy, execution time, false positive

rate, and precision-recall balance, are used

to assess how well AI-driven code review

works. AI-powered reviews and

conventional static analysis tools are

compared to gauge advances in bug

identification rates and efficiency.

Additionally, case studies of companies

implementing AI-driven code review are

used to evaluate the system's impactThese

studies examine important business

indicators like CI/CD pipeline

acceleration, defect detection rates, and

improvements in code quality [16]. To

assess developer confidence in AI

recommendations, software engineers,

DevOps specialists, and cybersecurity

specialists are surveyed and interviewed.

Modern IDEs, version control systems,

and CI/CD pipelines are connected with

the AI-powered code review system for

smooth adoption. By automating code

analysis preliminary to pull request

merging, real-time security checking, and

compliance implementation, the AI

provides CI/CD pipelines supported by

International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

562

platforms such as Jenkins, GitLab CI/CD,

and GitHub Actions [17]. It offers

refactoring advice, auto-correction, and

real-time inline suggestions in IDEs like

VS Code, IntelliJ IDEA, and PyCharm.

Because AI-powered feedback is

immediately integrated into development

workflows, the technology promises

ongoing software quality tracking and

improvement. This process assures that AI-

powered autonomous code review is not

only reliable and efficient but also scalable

and flexible, which will revolutionize

software development by improving

accuracy, security, and maintainability

while lowering human error and manual

labour.

6. Future Scope

By increasing precision, effectiveness, and

security, AI-powered automated code review

is set to transform software development in

the future. More intelligent, context-aware code

analysis will be enabled by advancements in

Machine Learning, Explainable AI (XAI), and

Natural Language Processing (NLP). While

human-AI collaboration will enhance

decision-making, future AI models will be

self-learning and adapt to project-specific

coding styles through continuous

feedback. AI will evolve to not only detect

errors but also suggest and apply fixes

automatically, leading to intelligent auto-

correction and code refactoring. Real-time

AI-powered assistants will provide instant

feedback within IDEs, boosting developer

productivity. Cross-language support and

domain-specific AI models will ensure

greater applicability across industries such

as finance, healthcare, and cybersecurity

[13,14,15]. security and compliance will

be enhanced through AI-driven

vulnerability detection, automated

compliance enforcement, and blockchain-

based audit trails. Cloud and edge

computing will make AI-powered code

review scalable and accessible. Ethical AI

considerations, including bias reduction,

accountability, and intellectual property

protection, will shape responsible AI

development. Ultimately, AI-driven code

review will become an integral part of

CI/CD pipelines, ensuring high-quality,

secure,andmaintainablecode, thereby trans

forming the future of software

development [12,16].

7. Conclusion

This study concludes that the creation of

software is being transformed by AI-

powered automated code reviews that

promote code reliability, safety and

accuracy. Although successful, traditional

manual code audits are often difficult and

prone to human error. AI-driven solutions

analyze source code, identify

vulnerabilities, and offer valuable

suggestions with the help of Machine

Learning (ML), Natural Language

Processing (NLP), and Deep Learning.

This study indicates the superior accuracy,

speed and scalability of AI-based

technologies over classic static analysis

methodologies. To increase adoption

and dependability, however issues such as

explainability, security risks, false

positives, and biases in AI models must be

addressed. Enhancing the effectiveness of

AI-driven code review will require a

combination of explainable AI (XAI), self-

learning systems, and human-AI

collaboration. Future developments will

concentrate on automatic bug fixes, cross-

language code reviews, security

compliance, real-time AI support, and

ethical AI management.

8. References

[1] N. Ernst, A. Alami, "Human and

Machine: How Software Engineers

Perceive and Engage with AI-Assisted

Code Reviews Compared to Their Peers,"

Department of Computer Science,

University of Victoria; Mærsk Mc-Kinney

Møller Institute, University of Southern

Denmark [2025].

[2] U. Cihan, V. Haratian, A. İcöz, M. K.

Gül, Ö. Devran, E. F. Bayendur, B. M.

Uçar, and E. Tüzün, "Automated Code

Review in Practice." [2024].

International Journal of Modern Science and Research Technology

ISSN NO-2584-2706
Volume-3, Issue-5, May2025

IJMSRT25MAY97 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15567600

563

[3] M. Vijayvergiya, "AI-Assisted

Assessment of Coding Practices in Modern

Code Review," Google [2024].

[4] R. Wang and D. Ford, "Investigating

and Designing for Trust in AI-powered

Code Generation Tools," University of

Washington, Seattle, WA, USA; Microsoft

Research, Redmond, WA, USA [2024].

[5] Y. Almeida, D. Albuquerque, E. D.

Filho, and F. Muniz, "AICodeReview:

Advancing Code Quality with AI-

enhanced Reviews." [2024].

[6] Resolving Code Review Comments

with Machine Learning. In International

Conference on Software Engineering:

Software Engineering in Practice (ICSE-

SEIP) [2024].

Alexander Frömmgen, Jacob Austin, Peter

Choy, Nimesh Ghelani, Lera Kharatyan,

Gabriela Surita, Elena Khrapko, Pascal

Lamblin, Pierre-Antoine Manzagol,

Marcus Revaj, Maxim Tabachnyk, Daniel

Tarlow, Kevin Villela, Daniel Zheng,

Satish Chandra, and Petros Maniatis.

[7] Generative AI for Automated Code

Review, Testing, and Deployment, Bright

Matthew [2024].

[8] A. Roberts, H. W. Chung, G. Mishra,

A. Levskaya, J. Bradbury, D. Andor, S.

Narang, B. Lester, C. Ganey, A.

Mohiuddin, et al., "Scaling Up Models and

Data with T5X and SeqIO," Journal of

Machine Learning Research, vol. 24, no.

377, [2023].

[9] J. Smith, K. Doe, and L. Brown,

"Integrating AI-Powered Code Review in

CI/CD Pipelines," Journal of Software

Engineering and Applications, vol. 15, no.

4, pp. 120-134, [2023].

[10] M. Pradel, T. Bernard, and B. Baudry,

"Deep Learning-Based Automated Code

Review," Proceedings of the 44th

ACM/IEEE International Conference on

Software Engineering (ICSE) [2022].

[11] M. Pradels, T. Bernard, and B.

Baudry, "Deep Learning-Based Automated

Code Review," Proceedings of the 44th

ACM/IEEE International Conference on

Software Engineering (ICSE) [2022].

[12] K. Sharma and A. Gupta, "Blockchain

and AI for Secure Software Development:

A Future Perspective," Future Internet,

vol. 14, no. 3, pp. 1-20, [2022].

[13] S. Lin, J. Luo, and T. Wang,

"Explainable AI for Code Review:

Improving Trust in Automated Systems,"

Proceedings of the IEEE International

Conference on Artificial Intelligence

(ICAI) [2021].

[14] Z. Guo, Z. Yang, Y. Zhang, H. Sun,

and H. Peng, "CodeBERT: A Pre-Trained

Model for Programming and Natural

Languages," Findings of the Association

for Computational Linguistics: EMNLP,

pp. 1536-1547, [2020].

[15] D. Vassallo, R. Bavota, G. Canfora,

and M. Di Penta, "Context-Aware Code

Review Using Machine Learning,"

Proceedings of the 42nd International

Conference on Software Engineering

(ICSE) [2020].

[16] J. Devlin, M. Chang, K. Lee, and K.

Toutanova, "BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding," Proceedings of NAACL-

HLT [2019].

[17] M. Allamanis, M. Brockschmidt, and
E. T. Barr, "Learning to Represent

Programs with Graphs," Proceedings of

the International Conference on Learning

Representations (ICLR) [2018].

